Prediction of regulatory networks: genome-wide identification of transcription factor targets from gene expression data
نویسندگان
چکیده
MOTIVATION Defining regulatory networks, linking transcription factors (TFs) to their targets, is a central problem in post-genomic biology. One might imagine one could readily determine these networks through inspection of gene expression data. However, the relationship between the expression timecourse of a transcription factor and its target is not obvious (e.g. simple correlation over the timecourse), and current analysis methods, such as hierarchical clustering, have not been very successful in deciphering them. RESULTS Here we introduce an approach based on support vector machines (SVMs) to predict the targets of a transcription factor by identifying subtle relationships between their expression profiles. In particular, we used SVMs to predict the regulatory targets for 36 transcription factors in the Saccharomyces cerevisiae genome based on the microarray expression data from many different physiological conditions. We trained and tested our SVM on a data set constructed to include a significant number of both positive and negative examples, directly addressing data imbalance issues. This was non-trivial given that most of the known experimental information is only for positives. Overall, we found that 63% of our TF-target relationships were confirmed through cross-validation. We further assessed the performance of our regulatory network identifications by comparing them with the results from two recent genome-wide ChIP-chip experiments. Overall, we find the agreement between our results and these experiments is comparable to the agreement (albeit low) between the two experiments. We find that this network has a delocalized structure with respect to chromosomal positioning, with a given transcription factor having targets spread fairly uniformly across the genome. AVAILABILITY The overall network of the relationships is available on the web at http://bioinfo.mbb.yale.edu/expression/echipchip
منابع مشابه
Reliable prediction of regulator targets using 12 Drosophila genomes.
Gene expression is regulated pre- and post-transcriptionally via cis-regulatory DNA and RNA motifs. Identification of individual functional instances of such motifs in genome sequences is a major goal for inferring regulatory networks yet has been hampered due to the motifs' short lengths that lead to many chance matches and poor signal-to-noise ratios. In this paper, we develop a general metho...
متن کاملIntegrated analysis of regulatory and metabolic networks reveals novel regulatory mechanisms in Saccharomyces cerevisiae.
We describe the use of model-driven analysis of multiple data types relevant to transcriptional regulation of metabolism to discover novel regulatory mechanisms in Saccharomyces cerevisiae. We have reconstructed the nutrient-controlled transcriptional regulatory network controlling metabolism in S. cerevisiae consisting of 55 transcription factors regulating 750 metabolic genes, based on inform...
متن کاملIn silico identification of miRNAs and their target genes and analysis of gene co-expression network in saffron (Crocus sativus L.) stigma
As an aromatic and colorful plant of substantive taste, saffron (Crocus sativus L.) owes such properties of matter to growing class of the secondary metabolites derived from the carotenoids, apocarotenoids. Regarding the critical role of microRNAs in secondary metabolic synthesis and the limited number of identified miRNAs in C. sativus, on the other hand, one may see the point how the characte...
متن کاملAssessing Computational Methods for Transcription Factor Target Gene Identification Based on ChIP-seq Data
Chromatin immunoprecipitation coupled with deep sequencing (ChIP-seq) has great potential for elucidating transcriptional networks, by measuring genome-wide binding of transcription factors (TFs) at high resolution. Despite the precision of these experiments, identification of genes directly regulated by a TF (target genes) is not trivial. Numerous target gene scoring methods have been used in ...
متن کاملIn Silico Genome-Wide Screening for TnrA-Regulated Genes of Bacillus clausii
Bacillus clausii TnrA transcription factor is required for global nitrogen regulation. In order to obtain anoverview of gene regulation by TnrA in B. clausii KSMK16, the entire genome of B. clausii was screened forthe consensus sequence, 5’-TGTNAN7TNACA-3’ known as the TnrA box, and 13 transcription units werefound containing a putative TnrA box. The TnrA targets identified in...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Bioinformatics
دوره 19 15 شماره
صفحات -
تاریخ انتشار 2003